18 research outputs found

    Vapor-Driven Propulsion of Catalytic Micromotors

    Get PDF
    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors

    Design Considerations for 3D Printed, Soft, Multimaterial Resistive Sensors for Soft Robotics

    Get PDF
    Sensor design for soft robots is a challenging problem because of the wide range of design parameters (e.g., geometry, material, actuation type, etc.) critical to their function. While conventional rigid sensors work effectively for soft robotics in specific situations, sensors that are directly integrated into the bodies of soft robots could help improve both their exteroceptive and interoceptive capabilities. To address this challenge, we designed sensors that can be co-fabricated with soft robot bodies using commercial 3D printers, without additional modification. We describe an approach to the design and fabrication of compliant, resistive soft sensors using a Connex3 Objet350 multimaterial printer and investigated an analytical comparison to sensors of similar geometries. The sensors consist of layers of commercial photopolymers with varying conductivities. We characterized the conductivity of TangoPlus, TangoBlackPlus, VeroClear, and Support705 materials under various conditions and demonstrate applications in which we can take advantage of these embedded sensors

    E-Glider: Active Electrostatic Flight for Airless Body Exploration

    Get PDF
    The environment near the surface of asteroids, comets, and the Moon is electrically charged due to the Sun's photoelectric bombardment and lofting dust, which follows the Sun illumination as the body spins. Chargeddust is ever present, in the form of dusty plasma, even at high altitudes, following the solar illumination. If abody with high surface resistivity is exposed to the solar wind and solar radiation, sun-exposed areas andshadowed areas become differentially charged. The E-Glider (Electrostatic Glider) is an enabling capability foroperation at airless bodies, a solution applicable to many types of in-situ mission concepts, which leverages thenatural environment. With the E-Glider, we transform a problem (spacecraft charging) into an enablingtechnology, i.e. a new form of mobility in microgravity environments using new mechanisms and maneuveringbased on the interaction of the vehicle with the environment. Consequently, the vision of the E-Glider is toenable global scale airless body exploration with a vehicle that uses, instead of avoids, the local electricallycharged environment. This platform directly addresses the "All Access Mobility" Challenge, one of the NASA'sSpace Technology Grand Challenges. Exploration of comets, asteroids, moons and planetary bodies is limitedby mobility on those bodies. The lack of an atmosphere, the low gravity levels, and the unknown surface soilproperties pose a very difficult challenge for all forms of know locomotion at airless bodies. This E-Gliderlevitates by extending thin, charged, appendages, which are also articulated to direct the levitation force in themost convenient direction for propulsion and maneuvering. The charging is maintained through continuouscharge emission. It lands, wherever it is most convenient, by retracting the appendages or by firing a cold-gasthruster, or by deploying an anchor. The wings could be made of very thin Au-coated Mylar film, which areelectrostatically inflated, and would provide the lift due to electrostatic repulsion with the naturally chargedasteroid surface. Since the E-glider would follow the Sun's illumination, the solar panels on the vehicle wouldconstantly charge a battery. Further articulation at the root of the lateral strands or inflated membrane wings,would generate a component of lift depending on the articulation angle, hence a selective maneuveringcapability which, to all effects, would lead to electrostatic (rather than aerodynamic) flight. Preliminarycalculations indicate that a 1 kg mass can be electrostatically levitated in a microgravity field with a 2 mdiameter electrostatically inflated ribbon structure at 19kV, hence the need for a "balloon-like" system. Due tothe high density and the photo-electron sheath and associate small Debye length, significant power is requiredto levitate even a few kilograms. The power required is in the kilo-Watt range to maintain a constant chargelevel

    Vapor-Driven Propulsion of Catalytic Micromotors

    Get PDF
    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors

    Turning Erythrocytes into Functional Micromotors

    Get PDF
    Attempts to apply artificial nano/micromotors for diverse biomedical applications have inspired a variety of strategies for designing motors with diverse propulsion mechanisms and functions. However, existing artificial motors are made exclusively of synthetic materials, which are subject to serious immune attack and clearance upon entering the bloodstream. Herein we report an elegant approach that turns natural red blood cells (RBCs) into functional micromotors with the aid of ultrasound propulsion and magnetic guidance. Iron oxide nanoparticles are loaded into the RBCs, where their asymmetric distribution within the cells results in a net magnetization, thus enabling magnetic alignment and guidance under acoustic propulsion. The RBC motors display efficient guided and prolonged propulsion in various biological fluids, including undiluted whole blood. The stability and functionality of the RBC motors, as well as the tolerability of regular RBCs to the ultrasound operation, are carefully examined. Since the RBC motors preserve the biological and structural features of regular RBCs, these motors possess a wide range of antigenic, transport, and mechanical properties that common synthetic motors cannot achieve and thus hold considerable promise for a number of practical biomedical uses

    Extraordinary Photocurrent Harvesting at Type-II Heterojunction Interfaces: Toward High Detectivity Carbon Nanotube Infrared Detectors

    No full text
    Despite the potentials and the efforts put in the development of uncooled carbon nanotube infrared detectors during the past two decades, their figure-of-merit detectivity remains orders of magnitude lower than that of conventional semiconductor counterparts due to the lack of efficient exciton dissociation schemes. In this paper, we report an extraordinary photocurrent harvesting configuration at a semiconducting single-walled carbon nanotube (s-SWCNT)/polymer type-II heterojunction interface, which provides highly efficient exciton dissociation through the intrinsic energy offset by designing the s-SWCNT/polymer interface band alignment. This results in significantly enhanced near-infrared detectivity of 2.3 × 10<sup>8</sup> cm·Hz<sup>1/2</sup>/W, comparable to that of the many conventional uncooled infrared detectors. With further optimization, the s-SWCNT/polymer nanohybrid uncooled infrared detectors could be highly competitive for practical applications
    corecore